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Starting from the gas-kinetic model, a new class of relaxation schemes for the 
Euler equations is presented. In contrast to the Riemann solver, these schemes 
provide a multidimensional dynamical gas evolution model, which combines 
both Lax-Wendroff and kinetic flux vector splitting schemes, and their coupling 
is based on the fact that a nonequilibrium state will evolve into an equilibrium 
state along with the increase of entropy. The numerical fluxes are constructed 
without getting into the details of the particle collisions. The results for many 
well-defined test cases are presented to indicate the robustness and accuracy of 
the current scheme. 

KEY WORDS: Gas-kinetic relaxation schemes; compressible Euler equa- 
tions. 

1. I N T R O D U C T I O N  

Many  high-resolution shock-capturing schemes have been developed in the 
past 20 years. Most  of them either at tempt to resolve wave interactions 
through the upwind biasing of the discretization or explicitly introduce 
numerical  viscosity in just  the amoun t  needed to resolve discontinuities, t6~ 
Generally, there are different design principles for the construct ion of high- 
resolution schemes, such as Jameson's  symmetric limited positive (SLIP) 
formulations, tT~ The following analysis is similar to van Leer's termi- 
nology, ~7~ but  with a different viewpoint, which contains more physical 
intui t ion rather ,than mathematical  manipulat ion.  

A high-resolution scheme usually consists of two parts, the recon- 
struction of the initial data and the dynamical  evolution started from the 
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constructed data. In other words, these two stages can be regarded as 
geometrical and dynamical correlations for the gas flow around an artifi- 
cially defined cell boundary. 

The geometrical stage is a kinematic description of the flow variables, 
which tries to recover the continuous physical reality from the discretized 
data. Caution should be taken whenever doing the interpolations, other- 
wise Gibbs phenomena or local extrema can be unphysically created. The 
inclusion of some kind of limiters to eliminate the creation of any local 
extrema or to restrict the large subcell variations is physically correct and 
numerically necessary. The interpolated quantities could be continuous or 
discontinuous at the cell boundary according to the real flow situations; 
both cases are equally important. The behavior of different limiters is 
usually problem dependent: one limiter which is good for one test case may 
show unfavorable results for another one. It seems rather pointless to 
indulge in this variation of the limiters without good motives. However, 
using a high-order interpolation does not guarantee that the final scheme 
will also have the same order of accuracy as the order of the interpolation, 
since obtaining the solutions of the model equations (such as the Euler 
equations) with the interpolated data as the initial condition is still 
questionable. 

The second stage is the dynamical correlation, which uses physical 
models to construct the gas evolution picture starting from the interpolated 
data, and finally to obtain the numerical fluxes at a cell boundary. For the 
Euler equations, due to the complicated nonlinear wave interaction, the 
exact solution can be found only for simple initial value problems. For 
example, the Riemann solver is an exact solution under the condition of 
two constant states in the left and right sides of a cell boundary for 1D gas 
flow. Godunov-type schemes are based on this solution. 13~ One advantage 
of the Godunov method is that it includes dynamical interactions in the gas 
evolution process, and flow correlations can be clearly observed from the 
approximate Riemann solver, such as Roe's scheme, where Roe's average is 
actually some kind of correlation of the flow variables from both sides of 
a cell boundary. 113) However, except under special physical situations, the 
real flow distributions are not necessarily two constant states. Thus, the 
Riemann solver is actually a first-order representation of gas dynamical 
evolution, and the reconstructed data from the first stage have to be 
abandoned in some way in order to fit the initial value condition of the 
Riemann solver. Most authors, however, ignore this point, by mixing the 
order of the interpolation with the order of dynamics. 117~ For example, van 
Leer points out that all one needs to do to raise the order of accuracy of 
the upwind differencing scheme is to raise the order of accuracy of the 
initial value interpolation that yields the zone-boundary data. Although 
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Godunov-type methods have been successfully used in many numerical 
calculations, the ability of this gas evolution model to approximate all 
kinds of physical processes is still doubtful, especially for multidimensional 
flows. In order to compensate for the limitation of the Riemann solver to 
represent dynamical gas interaction, Colella and Woodward incorporated 
more physical reality into their PPM scheme, where two constant states for 
the Riemann solver are reconstructed from the initially interpolated 
parabolic distribution according to the local wave speeds, although finding 
the optimal waves is also a difficult job for the gas dynamical equations, c-'l 

A numerical scheme should have both the geometrical correlation in 
the first stage and the dynamical correlation in the second stage, and these 
two stages are inseparable. The upwind property is best understood when 
applied to the simple advection equation, where the geometrical and 
dynamical correlations look the same. For a nonlinear system, such as the 
Euler equations, the story is different. The main theoretical obstacle to 
handling all conservation laws by one single method based on the linear 
advection equation is the need to account for all possible modes of 
nonlinear interactions, which seems extremely difficult and physically 
unreasonable. One group of upwind schemes is flux vector splitting (FVS); 
these schemes are usually excessively diffusive and smear the shear 
layers) ~5"]6) The reason for this is that FVS does not incorporate any 
dynamical wave interactions between the left- and right-moving waves, or, 
more precisely, its dynamical evolution model is equivalent to solving the 
collisionless Boltzmann equation. In this case, the flow variables at the cell 
boundary can be approximated by a gas distribution function of two half 
Maxwellians, which have intrinsic viscosity and heat conductivity due to 
the deviation of its distribution from a real Maxwellian regardless of how 
much the mesh is refined. (221 There are many versions of flux vector 
splitting schemes, both for the Euler and gas-kinetic equations. In all these 
versions, if correlations between the left- and right-moving waves are 
missed at the dynamical stage, then these schemes will definitely fail for the 
Navier-Stokes simulations. On the contrary, flux difference splitting (FDS) 
schemes are less diffusive due to their dynamical wave correlation, therefore 
the resolution of the shear layers is much better than the FVS schemes. 

The advection upstream splitting method of Liou and Steffen is a 
scheme which fits neither in an FDS framework nor in an FVS frame- 
work,~10) but it indeed has the correlations of the left and right states in the 
construction of common flow variables at cell boundaries through Roe's or 
other kinds of averages. Hence, it does an extremely good job of resolving 
the shear layers. But in common with other schemes that use Roe's 
average, it shows excessive oscillations in the post-shock regions for blunt- 
body calculations, or even converges to nonphysical solutions under some 
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extreme conditions due to the flaws in the Roe's average. For example, 
certain conditions could exist for which Roe-average eigenvalues might 
lie outside the range determined by the left and right states/~8~ Searching 
for better averages (or dynamical flow correlation) for the left and right 
states at a cell boundary is still under intensive investigation. For central 
difference schemes with explicit artificial dissipation, flow correlations are 
usually obtained by the simple average of the flow variables from both 
sides of a cell boundary, such as the construction of the matrix A~+ 1/2 in 
the Lax-Wendroff-type schemes and evaluation of the Euler fluxes in JST 
schemes, c8~ This simple average does not necessarily recover flow dynamical 
processes, especially in discontinuous regions. 

The current state-of-the-art design principles are referred to as total 
variation diminishing (TVD), essentially nonoscillation (ENO), and local 
extremum diminishing (LED), 14-61 which are mostly understood for the 
scalar conservation laws and can be applied reasonably in the interpolation 
stages. In the gas evolution stage, the solution is not necessarily a decreasing 
function of time, and local extrema can be physically generated due to the 
nonlinear wave interactions. 

In summary, due to the complicated nature of the Euler equations, 
only a few solutions can be constructed under very simple initial value con- 
ditions, such as the Riemann solver. Fortunately, the dynamical model for 
the gas evolution is not unique. From the gas-kinetic BGK model, ~12" 21, 22) 
without getting into the details of the particle collisions, the time-dependent 
solution of the gas distribution function at a cell boundary has been 
obtained under more flexible initial conditions, where all slopes in x, y, and 
z directions can be included for the 3D flux calculation. Although how to 
define the multidimensional interpolation is still uncertain, the dynamical 
gas evolution model presented in this paper does have multidimensional 
properties. Also, the intrinsic physical property of upwinding is satisfied on 
the level of particle motion instead of picking up a limited number of 
waves. In addition, the numerical solution satisfies the entropy condition 
naturally, t22) It is known that the BGK model is equivalent to the Euler 
and Navier-Stokes equations. Therefore, philosophically, developing a 
scheme from the gas-kinetic model is similar to these approaches of solving 
the Euler equations, which change its conservative variables into primitive 
variables in order to get a simple solution, or to figure out a clear physical 
picture under the new formulation. 

Section 2 describes the construction of a new gas evolution model for 
the compressible Euler equations. In contrast to previous work, the colli- 
sion time need not appear in the final flux formulation, and the time evolu- 
tion process is much simplified compared to the original schemes, t12"21"22) 
Following this model, a class of new relaxation schemes can be con- 
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structed. Section 3 describes the application of the scheme to well-defined 
test cases. 

2. G A S - K I N E T I C  R E L A X A T I O N  S C H E M E S  

The fundamental task for constructing a finite-volume gas-kinetic 
scheme is to evaluate the gas distribution function f at a cell interface, from 
which the numerical fluxes can be computed. Due to the intrinsic dif- 
ficulties related to the collision term in the full Boltzmann equation, 
simplified gas-kinetic models are usually used for studying gas flow 
problems. Actually, for hydrodynamic simulations, the behavior of the fluid 
depends very little on the nature of individual particles in that fluid. The 
most important criterion for the microscopic model is that it satisfies the 
minimum requirements of conservation laws and symmetries. The collision 
model used in this paper is the BGK model, I ~) from which the Euler and 
Navier-Stokes equations can be obtained. A group of gas-kinetic schemes 
based on this model have been developed in the past few years, t12" 21, 22) In 
this section, a new class of gas relaxation schemes will be presented. 

In two dimensions, the BGK model describes the evolution of the gas 
distribution function f as 

f t  + uf,. + Vfy=(g-- f ) / r  (1) 

where g is the equilibrium state which the real gas distribution function f 
approaches in a time scale r. The collision time r is usually regarded as a 
function of local density and temperature. In the above equation, both f 
and g are function of space (x, y), time t, particle velocity (u, v), and 
the internal variable ~ (with K degrees of freedom). The relation between 
the macroscopic mass p, momentum P, and energy e densities with the 
distribution function f is 

(i), P~ = ~k=f d3, c t = 1 , 2 , 3 , 4  (2) 

where ~ is the vector of the moment, defined as 

~=--(1, u, v, �89 +v2 +~2)) (3) 

and d 3 =  du dv d~ is the phase-space volume element. In the BGK model. 
the equilibrium state g has a Maxwellian distribution given by 

g = A e - ~ . . -  u)'-+ ~v- v)2 + r (4) 
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Here U and V are average macroscopic velocities, and 2 is related to the 
particle mass m and temperature T through 2 = m / 2 k T .  Since mass, 
momentum,  and energy are conservative quantities in the process of  
particle collisions, f and g have to satisfy the conservation constraint of  

f ~b~( f -  g) d~  = 0, ~ = 1, 2, 3, 4 (5) 

at any point in space and time. 
The general integral solution of  the B G K  model in two dimensions 

can be written a s  (9) 

f ( x ,  y, t, u, v, ~) = r g(x ' ,  y' ,  t, u, v, ~) e - ( ' - " V ~  dt' 

+ e - ' /~ fo(x  - ut, y - vt) (6) 

where x'  = x - u(t - t ') and y '  = y - v(t - t ') are the trajectories of  particle 
motion, and fo is the gas distribution function f at the beginning of  each 
time step (t = 0). The final distribution function f at the cell interface (x, y) 
and time t is determined by two unknown functions of  g and fo. In the 
following presentation, the center of  a cell boundary  will be assumed to be 
at (x = 0, y = 0), and the final numerical fluxes will be evaluated in the x 
direction. 

Considering a smooth  2D gas flow, we can approximate the equi- 
librium state g around a cell boundary  as 

g =g0(1 + a x + b y + A t )  (7) 

where go is a Maxwellian distribution located at (x = 0, y = 0, t = 0), and 
a, b, and .4 are Taylor  expansions of  a Maxwellian which have the 
following form: 

a = al + a2u +a3v  q- a4(u 2 q--/)2 ..{_ ~2) 

b = bl + bzu + b3v + b4(u 2 -k- V 2 + ~2) (8) 

A = A l  + X z u + X 3 v + X 4 ( u 2 + v 2 + ~  ') 

All parameters of  a~, a2 ..... -~4 are local constants. These constants A, 2, U, 
and V in go can be obtained directly from the interpolated macroscopic 
variables at a cell boundary  or from the assumption of  fo, as shown later. 
Then, a and b can be found from the slopes of  the initial interpolations 
of macroscopic mass, momentum,  and energy densities across the cell 
boundary  at time t = 0. In smooth flow regions, the initial gas distribution 
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fo usually stays in an equilibrium state, which is equal to g at t = O. Under 
this assumption, we have 

f0 =g0(1 +ax+by)  (9) 

Substituting both Eqs. (9) and (7) into Eq. (6), we can obtain the time- 
dependent f at the cell boundary 

f =go (1  + r ( - 1  +e-' /~)(ua+vb)+r(t/~-I  +e -t/*) A) (10) 

In order to obtain the unknown term A in the above equation, the 
compatibility condition, Eq. (5), has to be used. The expression o f f - -g  at 
the cell boundary is 

f --g=gor(--1 +e-'/~)(ua + vb + A) (11) 

which determines ,4 solely from its moments in terms of the moments of a 
and b, 

f ~. go ~ dS = - f ~O.go(au + vb) dE (12) 

The above relation guarantees that the compatibility condition, Eq. (5), is 
satisfied exactly at any time within the whole time step. In previous 
workt~2, 21, 22~ the averaging of this condition over the whole time step was 
used to evaluate A. The technique of obtaining ,4 in Eq. (12) is similar 
to the Lax-Wendroff scheme. However, the matrix transformation that 
connects space and time derivatives is easier to evaluate from the above 
gas-kinetic description than that usually used in the Lax-Wendroff-type 
schemes, especially for the Navier-Stokes equations. The nonlinear for- 
mulation of the Lax-Wendroff scheme requires the evaluation of the 
Jacobian matrix Ai+ v2 at the cell boundary, and the matrix here is a func- 
tion of go in the current gas-kinetic scheme. As we will show later for the 
evaluation of go, the gas-kinetic approach leads to an alternative, nonlinear 
variant of the basic Lax-Wendroff schemes. In a region of smooth flow, 
f in Eq. (10) is an accurate representation of the gas distribution function 
for the Navier-~tokes solutions/2~ 

For real gas flows, due to the nonlinearity of the BGK model, shock 
waves whose scales are smaller than the cell size are easily formed. In these 
regions, the initial gas distribution function fo is a dramatically spatially 
varying function and remains in a nonequilibrium state. So, a safe represen- 
tation of fo around a cell interface is to interpolate it in the x > 0 and 



154 Xu 

x < 0  regions separately. Thus, instead of Eq.(9), in the simplest case 
(ignoring higher order terms), we can assume f0 to be discontinuous, 

~-gt, x < 0  (13) f~ r, x > 0  

Both gZ and g~ are Maxwellians, which can be obtained from the interpola- 
tions of the initial macroscopic mass, momentum, and energy densities at 
both sides of a cell boundary. Limiters should be involved in this interpola- 
tion stage. Substituting fo into Eq. (6) and taking the limit as t --, 0, one 
finds that f should approach fo at x = 0, with 

~-g/, u > 0 (14) f =f~176 u < 0  

Because the nonequilibrium state fo and the equilibrium state go have to 
satisfy the conservation constraint (5) at ( x=0 ,  y = 0 ,  t--0),  then go in 
Eq. (7) can be obtained in the following way, 

=f,,>o~b~,gtdY_,+f,,<or ct = 1, 2,..., 4 (15) 

The construction of go in Eq. (15) gives a new way to construct flow 
variables at a cell boundary, and this construction is unique for the gas- 
kinetic scheme. Also, it can be shown that the entropy of go is always larger 
than the entropy of fo in the above construction, (22) which guarantees that 
the dynamical system evolves in a physically correct direction. The under- 
lying assumption for this construction is that gas particles from the left and 
right sides will collapse totally and instantaneously at the cell boundary to 
form an equilibrium state. This assumption creats "pseudocollisions" in the 
gas flow at the cell boundary, which prevents the particles from penetrating 
each other easily, and these "pseudocollisions" also provide additional 
artificial viscosity, which could probably poison the real physical viscosity 
in the Navier-Stokes equations. For the Euler calculations, however, the 
advantage of this assumption is that it could increase the stability region 
for the numerical calculation and reduce numerical noise in the results. 
But, physically, this assumption is too restrictive for a real flow problem, 
especially for shock waves, where a dissipative, nonequilibrium, and stable 
structure could exist without relaxing into an equilibrium state. For- 
tunately, the resulting go in the above equation is an imaginary equilibrium 
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state, and the BGK model only tells us that the real gas distribution f will 
approach go, but it is not necessarily equal to it. With the assumption of 
g = g o ( l  + a x + b y + A t )  in Eq. (7) and )co in Eq. (14), to the order of the 
Euler equations, the resulting gas distribution function f at a cell boundary 
can be approximated as 

f(O, O, O, t) = ( 1 - e-t/z) go tAgo + e -'l~fo (16) 

The above equation describes a relaxation process for the nonequilibrium 
state )Co evolving into the equilibrium state go. At the same time, due to the 
spatial variation of macroscopic variables across the cell boundary, the 
equilibrium state is also a time-evolving function. The time-dependent term 
.4 not only increases the time step for the numerical simulations, but also 
gives a high order of accuracy for unsteady flow calculations. Equation (16) 
can be arranged as 

f (0 ,  0, 0, t) =go( 1 +At)  + e-'/~(fo --go) (17) 

In contrast to the Riemann solver, the above equation describes a multi- 
dimensional dynamical gas evolution model, which provides the time- 
dependent gas distribution function at a cell boundary. The first term in the 
right-hand side of Eq. (17) is the gas-kinetic Lax-Wendroff scheme, which 
accounts for the time evolution of the equilibrium gas distribution function. 
The second one is the gas-kinetic dissipation term, which is proportional to 
the differences between the nonequilibrium and equilibrium states. For 
example, the shock wave is a dissipative and stable system, which is far 
away from an equilibrium state. In this case, the second term should be 
large. However, flux vector splitting and kinetic flux vector splitting 
schemes usually overemphasize the nonequilibrium property of the gas dis- 
tribution.(15.,6. 11) Instead of Eq. (17), they use f = f o  as the distribution 
function at the cell boundary to evaluate the numerical fluxes. Therefore, 
FVS schemes are very dissipative due to the two half Maxwellians in f0 
[Eq. (14)]. 

Equation (17) can be integrated directly to get time-dependent 
numerical fluxes, along with the modification of the collision timeJ 2~" 12. 22) 
But in order to simplify further the gas relaxation process for the Euler 
calculations, e -'/~ will be approximated by simple physical models. 
Generally, we can rewrite Eq. (17) as 

f (0 ,  0, 0, t) = go( 1 + At) + s )(fo - g o )  (18) 

where 5e(. ) is the relaxation parameter, and should be a function of local 
flow variables. ~ ( - )  determines how fast the system can be evolving into 
the equilibrium state. 
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There are many ways to construct ,La(.). In this paper one choice of 
s ) is given. As we know, for shock waves, the distribution function will 
stay in a nonequilibrium state along with the pressure jumps across the 
shock. So, the function ~ ( .  ) can be designed as a function of local pressure 
differences around the cell boundary (i + 1/2), as 

La(. ) = 1 - e-C~ maxlapl, ~m) (19) 

where 

Apl = I(Pi-t . j+Pi+l.j-2Pi.:)l  (20) 
Ipi.j-p~-,,j l  + IP~+ 1.j-P~.sl 

dp,_= I(Pi'J+Pi+2"j--2P~+I':)I (21) 
IPi+ t.j--P~.:l + IP~+ ,_,j--P~+ ~.:1 

The new scheme presented in this section will be summarized as 
follows. From the interpolation of macroscopic conservative variables, 
according to Eq. (13), f0 is constructed, from which go can be obtained 
[Eq. (15)]. After this, a and b in Eq. (7) are found from the differences of 
the macroscopic variables across the cell boundary ( i+1/2) ,  such as 
Pi+~.j-Pi.j. Then, from Eq. (12), ,~ is obtained in terms of a and b. 
Finally, the distribution function at the cell boundary is f in Eq. (18), 
where the relaxation parameter ~ ( - )  is determined by Eq.(19). The 
numerical fluxes across the cell boundary at ( i+  1/2) in the x direction are 
given by 

= f q,.uf(O, o, t) d z  (22) 

After the integration in the above formula, there are no microscopic 
variables involved in the numerical fluxes. Then, the evolution of mass, 
momentum, and energy densities in the x direction in cell j in a time step 
from t" to t" +j is 

" k  +' 

"7 t') PI, (o~)j  _ 

j i j 

(~)j+l/2dt, ~ = 1 , 2 , 3 , 4  (23) 

where A t = t " + ~ - t  " is the time step, and j - 1 / 2  and j +  1/2 are the left 
and right cell boundaries, respectively, for cell j. 
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3. N U M E R I C A L  EXAMPLES 
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Many 1D and 2D test cases have been presented for the numerical 
Euler and Navier-Stokes solutions using the earlier gas-kinetic schemes 
based on the solution of the BGK model. (12"21'22) It appears that this 
scheme can give an accurate result for problems with a strong rarefaction 
wave in the high-speed, low-density regions. Actually, this is not surprising, 
since all particles with velocities from - o o  to + oo have been considered 
in the process of computing numerical fluxes. 

In all the following, we will apply the new scheme developed in this 
paper to some well-known test cases with strong shocks. In all calculations, 
the van Leer limiter 

2 lul" Ivl L(u, v)= S(u, v ) -  (24) 
lul+lvl 

with S(u, v ) =  1/2{sign(u)+sign(v)}, is used for the interpolations of the 
macroscopic variables in order to construct fo, and Co--1.0 is used in 
Eq. (19). 

Case 1. The classical Sod test case is a shock-tube problem, which 
has the initial conditions p z = l ,  P~=0, e~=2.5 and p~=0.125, P r = 0 ,  
er = 0.25. Our results for 200 points are shown in Fig. 1, where the solid 
line is the exact solutions. (14) 

Case 2. The second test case is the blast-wave test with the initial 
conditions p~=l .0,  PI=O, e1=2500 for 0<x~<0.1,  p , , = l . 0 ,  P , ,=0 .0 ,  
e, ,=0.025 for 0 . 2 < x ~ 0 . 9 ;  and p r = l - 0 ,  P r=0 .0 ,  e r=250  for 
0.9 < x ~< 1. (19). We used 400 points in this case, and the results are shown 
in Fig. 2, where the solid lines are obtained from the same scheme with 800 
points. 

Case 3. .The forward-facing step test is carried out on a uniform 
mesh of 240 x 80 cells. (19) The density distribution is shown in Fig. 3. In 
contrast to the original Woodward and Colella calculations, there is no 
special treatment around the corner in this case, and the second Mach stem 
is much shorter than most results obtained from other shock-capturing 
schemes. 

822/81/I-2-11 
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Fig. 3. Density distribution for Mach 3 wind tunnel test with 240 x 80 cells. 

Case 4. The Mach 10 reflection of a strong shock test is calculated 
on the computat ional  domain of 360 x 120 cells/19~ The problem is set up 
by driving a shock down a tube which contains a wedge. The density 
distribution after the collision between the shock and the wedge is shown 
in Fig. 4. 

All these results confirm the accuracy and high resolution of  the 
current gas-kinetic relaxation scheme. Complex features, such as oblique 
shocks and the triple points, are captured without oscillations. So(. ) 
controls both the numerical and physical dissipation in the current scheme, 
and we cannot  say that the optimal choice of  s ) has been obtained in 
this paper. 

4. C O N C L U S I O N  

The gas-kinetic relaxation scheme presented in this paper is a 
simplified version of  the schemes developed in the earlier papers from the 
solution of  the gas-kinetic BG K  model. This new scheme provides a gas- 
dynamical model to account for the time evolution of the gas distribu- 

Fig. 4. Density distribution for double shock reflection test on mesh 360 x 120. 
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tion function starting from a cell boundary. The initial condition used here 
is more flexible than those used in the Godunov-type schemes. Also, the 
final gas distribution function combines both the gas-kinetic Lax-Wendroff 
and upwind schemes, while the nonequilibrium and equilibrium states are 
coupled according to the local physical situation. Due to the freedom in 
constructing the microscopic dynamical models of a gas flow, a host of 
variations of the present scheme can be obtained by justifying the relaxa- 
tion parameter s ). Actually, the problem is still solvable by the inclusion 
of more space and time variation terms, such as x'-, y2, xy ,  x t  ..... in g and 
fo for the multidimensional flow simulations. As we know, a multi- 
dimensional scheme should have multidimensional properties in both the 
interpolation and dynamical evolution stages. Breaking through the limita- 
tion of the Godunov-type schemes, the methods based on the BGK model 
capture naturally a multidimensional gas evolution processes. One of 
the most important point in this paper is to point out that gas-kinetic 
schemes are not about the study of the motion of individual particles at a 
microscopic level. In fact, after the moment integrations, no microscopic 
variables appear in our final fluxes in the present scheme, and the time 
steps used for all test cases in the numerical part are CFL time steps. Many 
people who are not familiar with the literature misunderstand or misjudge 
gas-kinetic schemes. They still cling to the traditional ideas about gas 
kinetics, that gas kinetics only concerns the study of the details of the 
microscopic phenomena and is not of much help for macroscopic flow 
simulations. The current paper, along with the previous ones] lz21"=~ 
shows that efficient numerical schemes can be constructed in a gas-kinetic 
way without getting into the details of the particle collisions. Actually, as 
shown in this paper, the unification of mass, momentum, and energy and 
their fluxes into a single gas distribution function with explicit expression 
makes the scheme simpler than many other schemes currently used, espe- 
cially for multidimensional calculations. The numerical results for many 
test cases demonstrate that this class of new methods is competitive with 
other high-resolution shock-capturing schemes. 
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